

NATIONAL CANCER INSTITUTE Division of Cancer Control & Population Sciences

Pathology report to cancer research: ensuring data quality in the Al era

Alison Van Dyke, MD, PhD, FCAP

October 18, 2024

Disclosures & Funding

I have no conflicts of interest to disclose

This work is funded &/or performed by the

- Surveillance Research Program in the Division of Cancer Control and Population Sciences of the National Cancer Institute, National Institutes of Health
- Cancer MoonshotSM
- US Department of Energy Oak Ridge National Laboratory

Topics Exploring

- Cancer surveillance system acquisition of pathology report data items
- Data quality assessments by data acquisition method
- How CAP is improving the foundation of cancer surveillance data quality
- Data quality standards & automated data capture
- Future of cancer surveillance data capture & reporting

Cancer surveillance systems & data acquisition methods Federally-funded Cancer Registries Cover 100% of the US Population

Surveillance, Epidemiology, and End Results (SEER)

Increase in Representation of Population Subgroups with SEER Expansion

Percent increase for US population subgroups with SEER expansion 2021

Total Population	13.3
White	12.5
Black	14.6
American Indian/Alaska Native	6.5
Asian	14.6
Native Hawaiian/Pacific Islander	5.0
2 or more races	12.3
Chinese	11.3
Filipino	12.5
Japanese	6.1
Hispanic	25.2

Mechanisms of Cancer Surveillance Data Acquisition

Citations: Bhandari, S.; Ranjan, N.; Kim, Y.-C.; Park, J.-D.; Hwang, K.-I.; Kim, W.-H.; Hong, Y.-S.; Kim, H. An Automatic Data Completeness Check Framework for Open Government Data. Appl. Sci. 2021, 11, 9270. <u>https://doi.org/10.3390/app11199270</u>. Accessed October 8, 2024.

Van Nederpelt, P. & Black, A. May 9, 2020. "Dimensions of Data Quality (DDQ) Research Paper" DAMA NL Foundation. <u>https://www.dama-nl.org/wp-content/uploads/2020/09/DDQ-Dimensions-of-Data-Quality-Research-Paper-version-</u> <u>1.2-d.d.-3-Sept-2020.pdf</u>. Accessed October 8, 2024.

Medical Record

Image: American Institute for Economic Research n.d. "The Workings of the Gold Standard" <u>https://aier.org/article/the-workings-of-the-gold-</u> <u>standard/</u>. Accessed October 13, 2024.

Oncology Data Specialists capture & maintain

Image Source: Daniel Sone. August 21, 2014. National Cancer Institute. https://visualsonline.cancer.gov/details.cfm?imageid=9707. Accessed October 4, 2024

Demographics Site & Morphology Stage at Diagnosis Grade **Biomarkers** Treatments Sequencing &

- Personalized Medicine
- Long-term follow up & Recurrence

Follow up cases

NCRA Registrar Workload & Staffing Studies (2011 & 2022)

Time

Case complexity

Data items

Abstracting time

Assessing ODS Data Quality via Benchmarking

Median/Multiple Outlier Testing (MMOT)

		Proportion of unknown $= \frac{Unknown}{Tatal}$		0	4	0	25	0
Calculate	proportion unknown			1	5	0	36	0
		Totat	2014	0	5	0	32	0
+								
Find	the median of the data	$\tilde{v}(v-tilde) = median\{v_{ij}, i = 1, \dots, I, i = 1, \dots, I\}$	Total	R1	R2	R3	R4	R5
			2010	2850	1734	1870	732	1685
↓			2011	2730	1654	1815	736	1676
	denter an former the survey line		2012	2656	1740	1879	695	1635
Calculate	deviance from the median	$(y_{ij}-y)$	2013	2601	1580	1839	712	1602
+			2014	2757	1582	1948	723	1736
Standardize	median of absolute deviance	$m_0 = median\{ y_{ij} - \tilde{y} , i = 1,, I, j = 1,$.,J}.	-				
•				en a	-			
Calculate	standardized deviation	$d_{ij} = \frac{y_{ij} - \tilde{y}}{1.48 \ m_0}$		Call I	E	Huar Cher	nn-Sh n, Phi	າeng D

NCI/SEER

R2

0

2

R1

1

0

Unknown

2010

2011

R3

1

0

R4

13

24

R5

0

1

Extent of disease prostate pathologic extension

	Code	Description	Summary Stage T*		
	000	Noninvasive	In situ		
	300	Confined to prostate without ECE	Localized		
	350	EPE without invasion of seminal vesicles	Regional		
	400	Invasion into seminal vesicles			
	500	EPE without invasion into adjacent structures			
	600	Invasion of bladder, external sphincter, EP urethra, rectum, muscle, ureter			
	700	Extension to bone, penis, sigmoid colon, soft tissue other than periprostatic, other organs	Distant		
	800	No evidence of primary tumor	Unknown		
	900	No prostatectomy/autopsy			
	950 No prostatectomy or surgery after disease progression				
	999	No documentation or unknown if surgery			
•	https://staging.seer.cancer.gov/eod_public/schema/3.1/prostate/?breadcrumbs=(~schema_list~)				

Pamela Sanchez, MPH, ODS-C NCI/SEER

Prostate Path Extension Proportion Unknown

Modernization of cancer surveillance data acquisition & monitoring data quality

Laboratory Data

Image: American Institute for Economic Research n.d. "The Workings of the Gold Standard" <u>https://aier.org/article/the-workings-of-the-gold-</u> <u>standard/</u>. Accessed October 13, 2024.

SER-cancer genomic & genetic data linkages

OXFORD

Journal of the National Cancer Institute Monographs, 2024, **2024(65)**, 168–179 https://doi.org/10.1093/jncimonographs/lgae013 **Monograph**

Reporting tumor genomic test results to SEER registries via linkages

Valentina I. Petkov (D, MD, MPH,^{1,*} Jung S. Byun, PhD, MPH,¹ Kevin C. Ward, PhD, MPH,² Nicola C. Schussler, BS,³ Natalie P. Archer, PhD, MS,⁴ Suzanne Bentler, PhD,⁵ Jennifer A. Doherty, MS, PhD,^{6,7} Eric B. Durbin, DrPH, MS,⁸ Susan T. Gershman, PhD, MPH,⁹ Iona Cheng (D, MPH, PhD,¹⁰ Tabassum Insaf, PhD, MPH, MBBS,¹¹ Lou Gonsalves, PhD,¹² Brenda Y. Hernandez, PhD,¹³ Lori Koch,¹⁴ Lihua Liu (D, PhD,¹⁵ Alain Monnereau, MD, PhD,¹⁶ Bozena M. Morawski, PhD, MPH,¹⁷ Stephen M. Schwartz, PhD, MPH,¹⁸ Antoinette Stroup, MD, PhD,¹⁹ Charles Wiggins, PhD,²⁰ Xiao-Cheng Wu (D, MD, MPH,²¹ Sarah Bonds, MS,¹ Serban Negoita (D, MD, DrPH,¹ Lynne Penberthy, MD, MPH¹

Valentina Petkov, MD, MPH NCI/SEER

Yao Yuan, PhD, MPH NCI/SEER (former fellow)

Rationale for Lab Test Linkage

- More efficient way for data collection by centralizing data acquisition the Honest Broker between SEER registries & industry
- Difficulties in training registrars in coding genomic/genetic data due to complicated, rapidly changing clinical practice
- Assure completeness and quality of data
- Case finding source, especially for cancer patients diagnosed & treated at community specialty practices

Industry Partners

Clinical purposes	Active linkages	Under negotiation
Cancer risk prediction	EXACT SCIENCES BIOSCIENCES BIOSCIENCES	Prolaris-prostate: EndoPredict-breast
Cancer genomics testing by multigene-panel next generation sequencing	CARIS LIFE SCIENCES	TEMPUS FOUNDATION MEDICINE GUARDANT
Hereditary cancer genetic testing	DioReference Ambry Genetics an OPKO Health Company INVITAE	color
Others (BMs, radiology, images)	syapse _®	MBRA

Exact Sciences linkage

Establishing data release process for specialized database

OncotypeDX Genomic Prostate Score (GPS)

- Recommended in guidelines for treatment decisions & prediction of adverse pathology, on market since 2013
- Latest linkage in 2022

 Case finding study (~20% of tested cases with no match in SEER) **OncotypeDX Invasive Breast Recurrence Score (RS)**

- 2004-2019
- 40% tests results reported were not coded by registrar (2010-2012)
- Agreement 94%
- Risk group misclassification <2%
- Released as specialized database

OncotypeDX DCIS

First time linkages

Caris

All SEER cases SEER dx 2000-2018 Tests 2013-2019 IHC (MMR/PD-L1) >300 tumor genes NGS

- Used in oncology practice
- Mutated/normal/VUS
- Pathologic variant
- TMB, MSI
- Testing method (NGS, RNA, IHC)
- Date

Castle Biosciences

Cutaneous melanoma

(DecisionDx-CM)

- 31 gene expression assay, suggested for stage I-III
- Predicts metastasis & level of follow-up
- SEER dx 2010-2019
- Risk group, test date, other path features

Uveal melanoma

(DecisionDx-UM)

- 15 gene expression assay for nonmetastatic disease
- 37% of cases linked to results

Decipher/Veracyte

Prostate cancer

- Decipher Bx/RP
- 22 gene assay, indicated at initial dx & after RP
- Prognostic & predictive
- Recommended in NCCN guidelines
- SEER dx 2010-2018
- Score, risk groups, & other path features

Top Limitations of Laboratory-SEER Linkages

False-negative linkage results

- PII incomplete or discrepant
- Diagnostic workup and/or treatment received out of state/catchment area
- Prior restrictions on results when all care received within VA/DoD health systems

Imprecise linkage results to specific cancer

Multiple cancers (e.g., breast, cutaneous melanoma, lung, etc.)

Registrar Coding

Image: American Institute for Economic Research n.d. "The Workings of the Gold Standard" <u>https://aier.org/article/the-workings-of-the-gold-</u> <u>standard/</u>. Accessed October 13, 2024.

National Childhood Cancer Data Initiative

1 to 3% of cancers in US per year

All rare cancers

 Established the National Childhood Cancer Registry (NCCR) cohort

National Cancer Institute. May 31, 2024. "About the Childhood Cancer Data Initiative (CCDI). <u>https://www.cancer.gov/research/areas/childhood/childhood-</u> <u>cancer-data-initiative/about</u> Accessed October 4, 2024.

NCI CHILDHOOD CANCER DATA INITIATIVE THE WHOLE IS GREATER THAN THE SUM OF ITS PARTS

NATIONAL CANCER INSTITUTE

Childhood cancer data is often stored at the hospital or institution where a child is treated. No single institution treats enough children to move research forward. Let's learn more to improve the future for children, adolescents and young adults (AYAs) with cancer by connecting this data and sharing it with the entire cancer research community.

National Childhood Cancer Registry (NCCR)

Seattle-Puget

National Cancer Institute. n.d. "National Childhood Cancer Registry." <u>https://nccrexplorer.ccdi.cancer.gov/about/nccr.html</u>. Accessed October 4, 2024.

Virtual Pooled Registry Cancer Linkage System (VPR-CLS)

45 registries covering 95% of US population

- Matching for
- Cohort studies
- Post-marketing surveillance
- Registries (multiple primaries, deduplication & outcomes & treatments sharing)

Assessing completeness of registry data for pediatric vs. adult cancer cases using NAACCR CiNA data

Fernanda Michels, MSc, PhD, ODS-C NAACCR

Stephanie Hill, MPH, ODS-C NAACCR

Betsy Kohler, MPH, ODS-C NAACCR

Goncalo Forjaz, DVM, MSc,ODS-C NCI/SEER

Unknown primary site by age group (2005-2020)

Proportion unknown for treatment status – all ages

Code	Treatment Status Description
0	No treatment given
1	Treatment given
2	Active surveillance (watchful waiting)
9	Unknown if given

Dx year

Proportion unknown for race by age group

Dv voar

Manually ODS coded Consolidated Tumor Case

Image: American Institute for Economic Research n.d. "The Workings of the Gold Standard" <u>https://aier.org/article/the-workings-of-the-gold-</u> <u>standard/</u>. Accessed October 13, 2024.

Modeling Outcomes using Surveillance data & Scalable AI for Cancer (MOSSAIC)

Lynne Penberthy, MD, MPH NCI/SEER

Elizabeth Hsu, PhD, MPH NCI/SEER ³⁶

Journal of the National Cancer Institute Monographs, 2024, 2024(65), 145–151

https://doi.org/10.1093/jncimonographs/lgae018 Monograph

Machine learning and deep learning tools for the automated capture of cancer surveillance data

Elizabeth Hsu, PhD, MPH,^{1,*} Heidi Hanson, PhD,² Linda Coyle, BS,³ Jennifer Stevens, BS,³ Georgia Tourassi, PhD,⁴ Lynne Penberthy, MD, MPH¹

¹Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, MD, USA
²Advanced Computing for Health Sciences, Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
³Information Management Services Inc, Calverton, MD, USA

⁴Computing and Computational Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA

*Correspondence to: Elizabeth Hsu, PhD, MPH, Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Dr, Bethesda, MD 20852, USA (e-mail: hsuel@mail.nih.gov).

Hsu, Elizabeth et al. "Machine learning and deep learning tools for the automated capture of cancer surveillance data." *Journal of the National Cancer Institute. Monographs* vol. 2024,65 (2024): 145-151. doi:10.1093/jncimonographs/lgae018

Algorithms & APIs in MOSSAIC

Algorithm & API	Primary prediction task(s)	Status
Pathology extraction	Tumor site &/or subsite Laterality Histology Behavior	In production in SEER*DMS
Reportability	Reportable or Nonreportable	Testing & validation
Biomarkers	ER, PR, HER2 (breast cancer) <i>KRAS</i> mutation for (CRC)	Development to extend to more biomarkers
Recurrence & metastasis	Yes, no, unknown	Development 38

Hsu, Elizabeth et al. "Machine learning and deep learning tools for the automated capture of cancer surveillance data." Journal of the National Cancer Institute. *Monographs* vol. 2024,65 (2024): 145-151. doi:10.1093/jncimo nographs/lgae018 39

Performance of Algorithms

Pathology Extraction Algorithm

Measure	Report-level version of API	Case-level Context version of API
Reports API can autocode	17.5%	23 to 27%
Accuracy (field or report)	98% (range: 97.1 to 99.4%)	>98%
Speed relative to human	man ~18,000 times faster	

Knowledge Transfer of Biomarker Algorithm

From KRAS (CRC) & HER2 (breast) KRAS (lung) & HER2 (stomach, esophagus, lung) all >98% accuracy with confidence >97% **Timeliness of** Data acquisition Reporting statistics Data release for cancer research & control

Data standards

https://img.freepik.com/free-photo/hourglass-with-sand-middle-word-sandit 123827-23414.jpg?size=626&ext=jpg. Accessed October 9, 2024

Moving to more timely data acquisition & incidence reporting

Journal of the National Cancer Institute Monographs, 2024, 2024(65), 123-131

https://doi.org/10.1093/jncimonographs/lgae024 Monograph

OXFORD

Toward real-time reporting of cancer incidence: methodology, pilot study, and SEER Program implementation

Huann-Sheng Chen (D, PhD¹, Serban Negoita (D, MD^{1,*}, Steve Schwartz, PhD, MPH², Elizabeth Hsu, PhD¹, Jennifer Hafterson (D, CTR², Linda Coyle, BS³, Jennifer Stevens, BS³, Anna Fernandez, PhD¹, Mary Potts, CTR², Eric J. Feuer, PhD¹

¹Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA ²Fred Hutch Cancer Surveillance System (CSS), Seattle, WA, USA ³Information Management Services (IMS), Inc, Calverton, MD, USA

*Correspondence to: Serban Negoita, MD, 9609 Medical Center Dr, Rockville, MD 20850, USA (e-mail: serban.negoita@nih.gov).

Huann-Sheng Chen, PhD NCI/SEER

Serban Negoita, MD, DrPH NCI/SEER

Current vs. Proposed Early Incidence Quality Standards

	TIME OF SUBMISSION SINCE END OF DIAGNOSIS YEAR (ex: 2021)				
CATEGORY	22 MONTHS (November 2023)	14 MONTHS (February 2023)	10 MONTHS (November 2022)	2 MONTHS (February 2022)	
Required Data Elements	Full Abstract	Full Abstract	Full Abstract of minimal data set		
Timeliness & Completeness	98% 1-yr reporting delay, DCO	95%	TBD		
Availability of Critical Data Elements	Primary site, Histology, Laterality, Stage	Primary site, Histology, Behavior, Year of diagnosis, Sex, & Age			
Accuracy of Geographic Elements	Urban geocoding , Rural geocoding	None			
Fitness for Survival Statistics	Follow-up %; missing COD	None			
Valid Values & Logical Checks	SEER Edits	Early Incidence Edits			

Data acquisition & submission

SEER*DMS Workflow - Comparison

Abstract Builds CTC and the Path Report is Linked

Path Report Builds CTC and the Abstract is Linked Later

(missing data for staging,

treatment, etc.)

 Receive Path Report
 1-2 Months: Initial* CTC Created
 Abstract Linked at 6+ Months
 Abstract data consolidated into CTC
 CTC Complete

 *initial path-only CTC will be incomplete

CTC = consolidated tumor case

Chen HS, et al. Toward real-time reporting of cancer incidence: methodology, pilot study, and SEER Program implementation. *J Natl Cancer Inst Monogr*. 2024;2024(65):123-131. doi:10.1093/jncimonographs/lgae024

Issues with pathology reportbased real-time reporting

- Sites less likely to have pathologic confirmation or are based on imaging (e.g., brain, spine, & liver tumors &/or metastatic disease)
- CAP eCPs & synoptic reporting not uniformly adopted
- Complex data fields not always available in EHR or structured pathology reports (race/ethnicity, sex at birth, & some biomarkers)

Data Standards Gap

Cancer Surveillance Standards

Pathology Report Language

n.d. *Navajo Bridge across Grand Canyon on route 89*. US Route 89 Appreciation Society, accessed December 5, 2023 <u>https://usroute89.com/wp-content/uploads/2017/01/Navajo Bridge 1989-07-1080x675.jpg</u>

Cancer PathCHART (CPC)

Cancer **Pathology** Coding **Histology** And Registration **T**erminology

SEER

NAACCR

PATHOLOGISTS

ICCR International Collaboration on Cancer Reporting

International Association of Cancer Registries

Statistics Canada

Statistique Canada

COLLEGE of AMERICAN AJCC American Joint Committee on Canc 100+years

International Agency for Research on Cancer

47

Vision & End Goals

 One source of truth for tumor sitemorphology combination standards

- Reducing differences between stakeholders
- Decreased implementation timeline
- Improved data quality

CPC Validity Standards

Sites Reviewed for 2024 Implementation

Validity Status	Site-Type Edit Errors	Coding in Cancer Registry Database
Valid	Will not generate edit errors	Can be coded
Impossible	Will generate an edit error	Cannot be coded
Unlikely*	Will generate an edit error	Requires manual override or correction to site and/or morphology to be coded

Sites Not Reviewed for 2024 Implementation

2024 Standard Used for Primary Sites Not Yet Reviewed	2024 Validity Status
2023 ICD-O-3 SEER Site-Histology Validation List	Valid
2023 Primary Site, Morphology-Imposs ICDO3 (SEER IF38)	Impossible
Combinations not included in 2023 Valid or Impossible standards listed above	Unlikely

Interdisciplinary Review Process

Organ Systems Reviewed

Implemented – 2024	To Be Implemented – 2025
Bone & soft tissue*	Central nervous system
Breast	Male genital*
Digestive	Respiratory
Female genital & reproductive	Soft tissue*
Male genital*	Thorax
Urinary*	Urinary*

*Review of morphologies at these sites completed for 2025

SEER*ClinCORE Pathologists

Aaron Auerbach Hematopathology

Thoracic Pathology

Mary Beth Beasley James Connolly **Breast Pathology**

Jessica Davis Bone/Soft Tissue & Pediatric Pathology

Neuropathology

Pei Hui **GYN** Pathology

Peter Humphrey Male Genital/Urinary Pathology

Jim Lewis Jr. Head/Neck Pathology & HPV

Priya Nagarajan Dermatopathology

Kay Washington **GI** Pathology

Implementation Timeline

Cancer PathCHART Updated Standards

Previous Standards

All Organ Sites

https://seer.cancer.gov/cancerpathchart/

SEER Data & Software 🔻

Registry Operations 🔻

News & Events

About SEER 🔻

Home / Registry Operations / Cancer PathCHART

Cancer PathCHART - Tumor Site-Morphology Surveillance Standards Initiative

Last Updated: September 6, 2023

Cancer PathCHART

Review Process

Product Downloads and Timelines

Communications and FAQs

What Is Cancer PathCHART?

Cancer Pathology Coding Histology And Registration Terminology (Cancer PathCHART) is a first-of-its-kind initiative in North America and around the world to update cancer surveillance standards for tumor site, histology, and behavior code combinations and associated terminology.

Why Is It Needed?

- The foundational data items of site, histology, and behavior are the basis for all subsequent data abstraction for a tumor (e.g., stage, treatment, outcomes).
- Accurate data are essential for the evaluation, management, research, and surveillance of cancer patients.

What Will Its Impact Be?

This vital online resource will help cancer registrars, clinicians, pathologists, researchers, and developers use the same terms and coding standards, making cancer surveillance more accurately reflect medical practice without altering cancer registration workflows, all to better support the critical data necessary for public health monitoring and cancer research.

Key Collaborators

- National Cancer Institute Surveillance, Epidemiology, and End Results Program (NCI – SEER)
- National Cancer Registrars Association (NCRA)
- North American Association of Central Cancer Registries (NAACCR)
- Centers for Disease Control and Prevention National
 Program of Cancer Registries (CDC NPCR)
- International Association of Cancer Registries (IACR)
- Statistics Canada | Statisique Canada
- World Health Organization International Agency for Research on Cancer (WHO – IARC)
- College of American Pathologists (CAP)
- American Joint Committee on Cancer (AJCC)
- American College of Surgeons Commission on Cancer (ACS – CoC)
- International Collaboration on Cancer Reporting
 (ICCR)

Previously Valid Combinations: Impossible as of 2024

Site Group	Code	ICD-O-3.2 Preferred Term	USCS Count 2015–2019	Consensus Comment
Endometrium	8460/3	Low grade serous carcinoma	3,486	Use 8441/3 (Serous carcinoma, NOS)
Liver	8160/3	Cholangiocarcinoma	2,998	Code to IHBD if clinical fits Biologically impossible in liver
Liver	8140/3	Adenocarcinoma, NOS	2,373	Code to IHBD if clinical fits Biologically impossible in liver
Prostate	8550/3	Acinar cell carcinoma	2,167	Use code 8140/3 (Acinar adenocarcinoma of prostate)
Breast	8510/3	Medullary carcinoma, NOS	1,224	Use 8500/3 if there's no additional characterization Not being used anymore

Liver USCS (2001-2021)

Intrahepatic Bile Ducts USCS (2001-2021)

Take Home Messages

Surveillance gold standards need to align with medical practice

Prioritize completeness using the correct gold standard for accuracy

Increased eCP synoptic reporting ensures cancer registry accuracy of critical data items

Timelier & more accurate data acquisition & reporting feasible with

- e-pathology report submission
- data linkages
- autocoding through NLP algorithms

Both registrars & pathologists are becoming the great integrators of automated data

PAST

Linda Bartlett. 1980. <u>NCI Visuals Online Pathologists Looking</u> into Microscopes. Jan 1, 2001

Mahmood, H, *et al.* Artificial Intelligence-based methods in head and neck cancer diagnosis: an overview. *Br J Cancer* **124**, 1934–1940 (2021). <u>https://doi.org/10.1038/s41416-021-01386-x</u>.

National Cancer Registrars Association. n.d. <u>https://www.ncra-usa.org/portals/68/Images/cancer-registry-eduction.jpg</u>.

FUTURE

Huo, Yuankai et al. "Al applications in renal pathology." *Kidney international* vol. 99,6 (2021): 1309-1320. doi:10.1016/j.kint.2021.01.015

Hsu, Elizabeth et al. "Machine learning and deep learning tools for the automated capture of cancer surveillance data." *Journal of the National Cancer Institute. Monographs* vol. 2024,65 (2024): 145-151. doi:10.1093/jncimonographs/lgae018

Document Management n.d. <u>https://documentarchiving.com/medical-records-storage/</u>.

For More Information

Visit the Cancer PathCHART website & CPC*Search tool https://seer.cancer.gov/cancerpathchart/

https://seer.cancer.gov/cancerpathchart/search/

Submit all Cancer PathCHART questions to Ask a SEER Registrar Select Cancer PathCHART https://seer.cancer.gov/registrars/contact.html